Neuregulin-1 and erbB4 immunoreactivity is associated with neuritic plaques in Alzheimer disease brain and in a transgenic model of Alzheimer disease.
نویسندگان
چکیده
Neuregulin-1 (NRG-1) regulates developmental neuronal survival and synaptogenesis, astrocytic differentiation, and microglial activation. Given these NRG-1 actions, we hypothesized that the synaptic loss, gliosis, inflammation, and neuronal death occurring in Alzheimer disease (AD) is associated with altered expression of NRG-1 and its receptors (the erbB2, erbB3, and erbB4 membrane tyrosine kinases). We examined the expression and distribution of NRG-1 and the erbB kinases in the hippocampus of AD patients and cognitively normal controls and in transgenic mice that coexpress AD-associated mutations of the beta amyloid precursor protein (APP(K670N,M671L)) and presenilin-1 (PS1(M146L)). In the hippocampi of both control humans and wild type mice, NRG-1 and the 3 erbB receptors are expressed in distinct cellular compartments of hippocampal neurons. All 4 molecules are associated with neuronal cell bodies, but only NRG-1, erbB2, and erbB4 are present in synapse-rich regions. In AD and in the doubly transgenic mouse, erbB4 is expressed by reactive astrocytes and microglia surrounding neuritic plaques. In AD brains, microglia and, to a lesser extent, dystrophic neurites, also upregulate NRG-1 in neuritic plaques, suggesting that autocrine and/or paracrine interactions regulate NRG-1 action within these lesions. NRG-1 and erbB4, as well as erbB2, are similarly associated with neuritic plaques in the doubly transgenic mice. Thus, in AD the hippocampal distribution of NRG-1 and erbB4 is altered. The similarities between the alterations in the expression of NRG-1 and its receptors in human AD and in APP(K670N;M671L)/PS1(M146L) mutant mice suggests that this animal model may be very informative in deciphering the potential role of these molecules in AD.
منابع مشابه
Octodon Degus: A Strong Attractor for Alzheimer Research
The most popular animal models of Alzheimer’s disease (AD) are transgenic mice expressing human genes with known mutations which do not represent the most abundant sporadic form of the disease. An increasing number of genetic, vascular and psychosocial data strongly support that the Octodon degus, a moderate-sized and diurnal precocial rodent, provides a naturalistic model for the study of the ...
متن کاملEffect of Long-term Exposure to Extremely Low-frequency Electromagnetic Fields on β-amyloid Deposition and Microglia Cells in an Alzheimer Model in Rats
Background: Recently, researchers have considered extremely low-frequency electromagnetic fields (ELF-EMFs), as one of the non-invasive therapies, in the treatment of many severe neurological disorders, including Alzheimer Disease (AD). AD is a progressive neurodegenerative disease characterized by the deposition of amyloid plaques in the brain. However, the increase in microglial cells increas...
متن کاملP 133: Neuroinflammation in Alzheimer ’s Disease
Alzheimer’s disease (AD) is a neurodegenerative disorder and the most common form of dementia. Almost 47 million people suffer from dementia worldwide. AD accounts for approximately 60%–80% of all dementia cases. Three major pathologies characterize the disease: senile plaques, neurofibrillary tangles and inflammation. We review the literature on events contributing to the inflammat...
متن کاملMicroglia in Alzheimer Brain: A Neuropathological Perspective
Microglia have long been noted to be present and activated in Alzheimer brain. Demonstrations that these microglia are associated with the specific lesions of Alzheimer disease-Aβ plaques and neurofibrillary tangles-and that these microglia overexpress the potent proinflammatory cytokine interleukin-1 led to the recognition of a potential pathogenic role for these cells in initiation and progre...
متن کاملP97: Physical Exercise as an Effective Factor in Alzheimer Disease
Alzheimer's disease (AD) is a progressive disease that destroys memory and other important mental activities. Scientists have found that remaining relatively active can lead to better brain activities in those at risk of developing AD. In some Meta-analyses of prospective investigations, a significantly reduced risk of dementia related to midlife exercise have been proven. Most studies have bee...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neuropathology and experimental neurology
دوره 62 1 شماره
صفحات -
تاریخ انتشار 2003